Intuitive diffraction model for multistaged optical systems

Eric L. Shirley

A simplified framework is motivated in which many diffraction effects can be treated, especially in

multistaged optical systems.

The results should be especially helpful for short wavelengths and broad-

band sources, for which numerical calculations can be most difficult.

OCIS codes:

1. Introduction and Motivation

Diffraction modifies the flow of light through optical
systems, changing it from what is expected according
to geometrical optics. To fully characterize the per-
formance of an optical system, it can be necessary to
account for diffraction effects, especially for purposes
of accurate radiometry. However, diffraction effects
can be exceedingly complicated and virtually impos-
sible to describe exactly, especially in multistage op-
tical systems. Therefore the merit of a description of
diffraction effects, or perhaps a preliminary descrip-
tion, might be a combination of its quantitative accu-
racy and its conceptual simplicity. In this paper an
intuitive framework is laid out that permits one to
estimate diffraction effects on the power received by
a detector in a blackbody calibration, but diffraction
effects in many analogous optical systems can also be
considered with suitable adaptation of the same
framework.

Many calibrations of blackbodies, in which one tra-
ditionally calibrates the radiance temperature of a
blackbody radiometrically, use an optical setup like
the one shown in Fig. 1. A blackbody cavity emits
radiation through a circular core opening of radius
Rggp. This opening is at a distance dgp from the
source defining aperture with radius R,, which de-
fines the portion of the blackbody core viewed by the
detector. Because the detector may sense other ra-
diation in addition to radiation emitted by the black-
body, one or more nonlimiting apertures or baffles
can be placed between the blackbody and the detector
to reduce such stray light.
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Ideally, the radiance temperature and source de-
fining aperture area are transferable characteris-
tics of a blackbody that do not change when the
blackbody is taken from one optical setup to an-
other. In particular, one usually desires that these
properties of the blackbody do not change between
when it is calibrated and when it is used as a cali-
brated source. Diffraction effects specific to each
optical setup do change, however. In a blackbody
calibration of the type described here, diffraction
losses can occur because the source defining aper-
ture diffracts light and so prevents some of it from
reaching the detector. Conversely, some light that
should not reach the detector aperture may acci-
dentally reach it because of diffraction by the non-
limiting apertures. To determine the transferable
blackbody characteristics most accurately, the
power that is measured during a calibration should
be interpreted with all of the above diffraction ef-
fects taken into account.

These issues have been discussed for some time,
as considered, for example, by Blevin,! Steel et al.,?
Boivin,3 and Shirley.#? In all these studies, the
authors treated diffraction effects in optical setups
by considering diffraction by apertures throughout
the setup one aperture at a time. In principle, it is
better to describe end-to-end propagation of light
through the entire optical setup in a coherent fash-
ion.6 However, this can be numerically intensive,
especially at small wavelengths. Moreover, the
small-wavelength behavior of diffraction effects on
spectral power reaching the detector can follow sim-
ple trends (e.g., giving a relative contribution to
spectral power that is proportional to wavelength
\), and one can often treat diffraction using simpli-
fied formulas. If the overall diffraction effects are
sufficiently small, simplified formulas may be ade-
quate.

In this paper I present an intuitive framework
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Fig. 1. Schematic optical setup for blackbody calibration.

Cylindrical symmetry with respect to the optical (z) axis is assumed. Shown

are the blackbody cavity opening, the source defining aperture (ap.), nonlimiting apertures to prevent stray light, and the detector aperture

with relevant dimensions and distances.

for estimating all the above diffraction effects
efficiently, hopefully with minor approximation,
emphasizing the possibility of treating small wave-
lengths, extended sources (e.g., large source defin-
ing apertures), and broadband sources. In part,
this follows from a lengthy consideration of and
experience in the modeling of how diffraction affects
the throughput of an optical system. In addition to
diffraction losses due to the defining aperture and
gains due to nonlimiting apertures, in this paper I
also account for some subtler diffraction effects.
Namely, the diffraction effects of nonlimiting aper-
tures can be affected because other optical elements
can geometrically obstruct light scattered by, or to
be scattered from, their edges and because the
source’s illumination of their light-diffracting edges
can be reduced by diffraction when the source de-
fining aperture is sufficiently small.

The framework presented here relies on several
assumptions that are often valid. The most impor-
tant assumptions are that we are considering the
propagation of polychromatic light with a sufficiently
small characteristic wavelength and that apertures
and other optical elements are either well overfilled
or underfilled so that their perimeters are sufficiently
far from geometric shadow boundaries or penumbra
regions. The framework works well in certain limits
and should not work in other situations. Results
found within the framework are obtained for optical
setups similar to those used in actual blackbody cal-
ibrations and are compared with numerically inten-
sive calculations that simulate end-to-end light
propagation through the setup. These results indi-
cate the plausibility of one using the framework in
similar situations. In the examples considered, the
required computer time was reduced by factors of
approximately 100 or greater with the present frame-
work as compared with the full numerical calcula-
tions.
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2. Geometries Considered

We consider light propagating through a cylindri-
cally symmetrical optical system depicted in Fig. 1.
The system consists of a source, a series of N non-
limiting apertures, and a detector whose circular
entrance aperture has radius R;. We define the
optical axis to be the z axis, with light moving
mainly in the positive z direction but with small
deflections in the x and y directions. The source
may be a point source, an extended-area circular
source with radius R, or a source in which radia-
tion is generated behind a source defining aperture
with radius R, as depicted in Fig. 1. In the former
two cases, the point or extended-area source would
be in the z = z, plane, centered with respect to the
optical axis. In general, light must either be emit-
ted at or pass through point r, = (x,, y,, z,), which
can be anywhere on the source area or source ap-
erture area for the latter two types of source. Ifthe
light reaches any point r; = (x4, y4 24) on the
detector aperture, it contributes to the power reach-
ing the detector. The N apertures are called non-
limiting because they do not block the line of sight
between any pair of points r, and r;. A nonlimit-
ing aperture i, for i = 1 to N, can be specified by the
z coordinate of the aperture’s plane z; and the ap-
erture radius r;.

3. Development of the Framework

The objective of this paper is an efficient, approxi-
mate scheme to determine the spectral power inci-
dent on the detector aperture, including all
diffraction effects. We first consider the simplest
problem, which is to determine the irradiance for a
single point source. We next consider the irradiance
for the case of a circularly symmetrical extended-area
source. Last, we consider the changes resulting
from having radiation actually emitted behind the
source defining aperture.



A. Diffraction Effects for a Point Source
For a monochromatic point source, the scalar radia-

tion field at point r, is given by

U(rda rs) = UG(rd> rs) + UD(rda rs)

ekl )
- D s s/

|rd - I‘s|

The first term has the form of an outgoing free spher-
ical wave emitted at point r,, and the second term is
a complicated expression with indicated dependences
and an implicit dependence on angular wave number
k = 2w/N. The second term accounts for diffraction
effects, and the irradiance at r, is affected by diffrac-
tion in approximately the same way as |U(r,, r,)[%.
Within the Kirchhoff diffraction theory by use of the
Fresnel approximation, one obtains

Wmnvmef d%.“f
aper 1 aper N

explik(|r, — rq| + - - - + vy — 14))]

x d%r
v (2, — 21). . (24 — 2y)

(2)

Here a distance is approximated, in a denominator
that can be taken outside the integral, as the differ-
ence in z coordinates, but when determining the com-
plex phase associated with a path length, we
approximate a distance according to the pattern

(x—x)+ (y —y")°
2z — 2’|

r—r'|=|z—-2'| + 3)

Evaluating the total U(r,, r,) is possible but can be
numerically intensive, and prohibitively so at small
wavelength A\. Furthermore, diffraction effects are
smallest at the smallest wavelengths, making it even
less helpful to expend considerable time and compu-
tational resources to determine such effects. In-
stead, I now provide an intuitive motivation for an
approximate evaluation of the relative diffraction ef-

fects on the spectral irradiance. We have
E)\(rda rg )\) _ _ |UD(rd7 I's)|2
EO,)\(rd, r; )\) |UG(rd7 rs)|2
+9 Re UG*(rd> rs)UD(rda rs)
|UG(rd? rs)|2

(4)

Here E,(r,, r ; \) denotes the actual spectral irradi-
ance at point r; because of a point source located at
point r,, including diffraction effects, whereas E , (r,
r,; \) denotes the analogous spectral irradiance ex-
pected according to geometrical optics, i.e., neglecting
diffraction effects. The first term on the right-hand
side is always positive and contributes to the spectral
power everywhere on the detector aperture at all
wavelengths. The second term is a cross term in-
volving Ux(r,, 1) and Up(ry, r,) and is oscillatory in

at least two ways. First, it oscillates as a function of
r;, and when it is averaged over an extended area of
the detector aperture, the second term is largely self-
canceling. This is especially true at small A, where
spatial oscillations are most rapid. The second term
also oscillates as a function of \, so that its effect on
total power for a broadband source (such as a black-
body) can be small, again especially around small A.
From this point forward, we ignore the second term.
Next, when we are considering diffraction effects for
radiation from a point source, it is useful to first
consider diffraction effects of a single nonlimiting ap-
erture and then to consider diffraction effects of sev-
eral nonlimiting apertures.

B. Single Nonlimiting Aperture

In the case of a single nonlimiting aperture, the
boundary diffraction wave formulation?® of the
Kirchhoff diffraction theory yields

dl - (s; X s,) {exp[ik(ss + sd)]]
S,) .

4m(sy8s + 84 * S:Sy

UD(rd’ rs) = JA
r
(5)

The line integral with respect to 1is done around the
aperture perimeter I' in the right-hand direction
about the direction of forward propagation, and we
introduced s; =1 —r;ands, =1—r,. Thisreplaces
Kirchhoff’s double integral with a single integral.
As written, Eq. (5) is valid if the line of sight between
r, and r; passes through the aperture, which is al-
ways true for a nonlimiting aperture. This suggests
the notion that there is a physical meaning in the
integrand related to scattering of light from each
point on the aperture perimeter. Such a connection
is actually not so straightforward, although Uj,(r,, r,)
must somehow originate from light interacting with
the aperture’s material near its perimeter.

It is convenient to approximate the above line in-
tegral in the following fashion. Letd, =2z; — z, and
d; = z; — 2z, denote the distances along the z axis
between the source and the aperture and between the
aperture and the detector planes, respectively. In
the Fresnel approximation, we have a total path
length related to the complex phase in Eq. (5) given
by

(xs - xd)2 + (ys - yd)2
2(d, + dy)

s+ sg=d,+dy;+

+L+i —x,)%+ (y — yn)?
2. [(x = x,)" + (y —yn)].

2d,
(6)
_ xsdd + xdds ysdd + ydds
(xma Yms Zl) - ( ds + dd ’ ds + dd » 21 (7)

is where the line segment between r, and r; passes
through the aperture plane. Only the last term on
the right-hand side in approximation (6) depends on
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1= (x,y, z,), and this term depends on r, and r, only
through x,, and y,,. It follows that we have

|UD(rd7 rs)|2 =~ |UD[(rm’ 0’ Zd)7 (rrm 0’ Zs):Hza (8)

with 7, = (x,,2 + y,, )2 In the Fresnel approxi-
mation, the right-hand side expression is

sa X 8, = [y(d, +dg), —(x —rp)

X (ds + dd)a 0]7 (9)
(dy+ dy)(x — )% + v
s, 08~ G
S4Ss Sy S, stdd (10)

For sufficiently large r,,, one can use the method of
stationary phase in the small-\ limit to perform the
integration in Eq. (5), because the integral is domi-
nated by the two sections of the aperture perimeter
where the phase of the integrand is stationary, near
1= (xry, 0, z,), where we have

(x, — x0)° + (35 — ¥a2)*
2((is + dd)

+ i_}_i (+ )2
od,  od,)| T

s;tsg=d,+d;+

T\ o
+ | Z1y?], (11
r
dl - (sg X's) =~ —[r; = (xr,)](d, + do)dy,  (12)
(ds + do)’[(£ry — 1) + %]
SyS; + 84 ° 8, = ¢ 2d51ld . (13)
We obtain
I.+1_
UD[(rm’ 0’ Zd)’ (rm’ 0’ Zs)] = msdda (14)
where, suppressing their arguments, we have
__ 2ddiexplid.) [ 2mndidy [
© o (dot dolr — (£r)] [ kr(d + dy)

The phases ¢.., which have not been specified, vary
relatively, so that, if one only seeks |Up(r,, r,)|* av-
eraged over the detector area or A, it suffices to con-
sider only the squared complex moduli of I, and I_,
yielding

d.d 1
|Up(xy, ,)|* = %G {

2mkr,(dy + dg)® | (ry — 7,,)?
1

+ m , (16)

where the omitted terms are approximated as being
self-canceling. Use of the stationary-phase approx-
imation to estimate asymptotic properties of the
boundary diffraction wave is an obvious idea often
anticipated by earlier research, perhaps most clearly
by Keller in connection with the geometric theory of
diffraction.® With this theory we can model diffrac-
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tion by considering rays that scatter off edges only at
discrete points and in certain distributions of direc-
tions arrived at by physical reasoning. The scatter-
ing efficiency is known to within the square of a
diffraction coefficient that must be deduced from
other diffraction calculations. Not surprising, the
points 1 = (*ry, 0, z,) in this paper correspond to the
points identified by Keller.

However, r,, can also be small or even zero, leading
to a divergence in the above result and a loss of spe-
cial meaning for the points 1 = (£ry, 0, z;). This
divergent behavior is associated with a breakdown of
the stationary-phase method when the asymptotic
conditions of validity are not met. However, in prac-
tice, the divergent behavior will often give rise to only
a mild degree of approximation. This is because,
when we integrate over r, for a fixed r, or vice versa,
a given value of r,, is sampled with a weight that is
linear in r,, in the limit of r,, — 0. Therefore the
integrated result has only a finite error, which de-
creases to zero in the small-\ limit. In practice, the
significance of this error is indicated by the degree of
accuracy of results obtained by the present method.

We now make the abbreviations u = kr,%(d, ' +
d; Y, v="krir, (d, ' +d; Y, andw =v/u=r,/r.
In what follows, the results are expressed most suc-
cinctly in terms of v and w, whereas u and v corre-
spond most closely to the arguments of Lommel
functions, which are indicated by the same symbols,
in discussions such as the one by Born and Wolf.10
We obtain

|UD(rda I.s)|2 ~ 1 + 1
|Us(ry, o) 2m0(1 +v/u)®  2mv(l —v/u)?

1 1
= +
2mv(1 + w)?  2mv(1 — w)?’

(17)

again presuming that the omitted terms can be ne-
glected. The first and second terms shown arise
from portions of the aperture perimeter that are far-
thest from and nearest to the point (x,,, y,,, 21), re-
spectively. Ultimately, we are considering
diffraction effects that depend on u and v, which in
turn depend only on A\, ry, 7, d,, and d,, some of
which in turn depend on r; and r,. In what follows,
it is convenient to use the shorthand N(r,, r,) =
1/[2mv(1 — w)*] and F(r,, r,) = 1/[270(1 + w)?].

C. Multiple Nonlimiting Apertures

In the case of multiple nonlimiting apertures, two
further conditions can still yield a convenient expres-
sion for important contributions to |Up(r,, r,)|*/
|Ug(ry, ry)|?.  First, note that the factor of exp[ik(s, +
sz)1/(sss,) in the integrand in Eq. (5) is the product of
two functions, exp(iks,)/s, and exp(iks,)/s;. Corre-
spondingly, in the case of a single aperture, light
propagates as an unperturbed wave between the
source plane and the aperture plane and between the
aperture plane and the detector plane. This is no
longer the case when there are multiple apertures,
because light passing from the source plane to an



aperture plane or from that aperture plane to the
detector plane will have to pass through other aper-
tures. Treating diffraction by a given aperture as
above accounts for all contributions of that aperture
to first-order diffraction effects, provided that the
geometric blocking effects of other apertures, when
relevant, are considered. Second, for sufficiently
broadband light, one can assume that diffraction ef-
fects of the apertures combine additively, so that, on
the average, interference effects involving different
apertures’ contributions to |U(r,, r,)|* are largely self-
canceling.

If these conditions are met, we hope to generalize
the above functions N(r,, r,) and F(r,, r,) to a set of
functions appropriate for each aperture i, [N;(r,, r,)]
and [F;(ry, r,)]. A function N,(r,, r,) would be cal-
culated in the same way as was the function N(r,, r,)
if the point on the aperture closest to the appropriate
point (x,,;, ¥,,.» 2;) has unblocked lines of sight to
both r, and r;,. However, the function N;(r,, r,) is
zero otherwise. Likewise, a function F,(r,, r,) would
be calculated in the same way as was the function
F(r,, r,) if the point on the aperture farthest from the
appropriate point (x,, ;,y,,;, 2;) has unblocked lines of
sight to both r, and r;,. However, the function F;(r,,
r,) is zero otherwise. One then obtains the result, in
the multiple-aperture case,

[Up(rs, v _ <
|UG(rda rs)|2 - Z [Ni(rd, rS) + Fi(rd’ rS):I + )
(18)

where terms not listed are assumed to be small or
nearly self-canceling.

D. Diffraction Effects for an Extended-Area Source

An extended-area source of the type we consider is
equivalent to a set of mutually incoherent point
sources distributed equally everywhere on the source
aperture area. We can find the diffraction effects on
the irradiance at point r; by averaging the diffraction
effects for all such point sources. Therefore, for the
case of an extended-area source, we obtain

E)\(rd) o _ 1 21‘ |UD(rd7 rs)|2
EO,)\(rd) TI'RSZ source aper ° |UG(rd’ rs)|2 .

As noted above, the approximate functions Fi(r,, r,)
and N(r,, r,) diverge as 1/r,, nears r,, = 0, but the
integration in Eq. (19) samples different values of r,,
in a fashion that renders a convergent result. It is
therefore wise, when we perform the integration in
Eq. (19) numerically, to do it in a way that explicitly
realizes this cancellation of the divergence. In this
paper integration is performed in cylindrical polar
coordinates in the source aperture plane with the
origin placed at the point corresponding to r,, = 0.

(19)

E. Diffraction Effects for Radiation Originating Behind the
Source Defining Aperture

The developments above were made with a point
source or extended-area source in mind. These mod-

els for the source are idealizations for many real
sources, such as blackbodies, where radiation is ac-
tually incident on a source defining aperture because
of a radiating cavity that is behind the aperture. In
geometrical optics, this would be a moot point, be-
cause the defining aperture would appear the same to
the detector as an extended-area source, if the radi-
ating entities in the cavity fill the field of view seen
through the aperture.

However, there are three possible effects of the
source defining aperture that concern us here.
First, diffraction losses at the source defining aper-
ture can prevent some flux from reaching the detec-
tor, implying that corrections are needed when source
radiance, source aperture area, and measured power
are related. These losses are well characterized and
discussed elsewhere.l> Second and third, the
source defining aperture can affect diffraction effects
of the N nonlimiting apertures by affecting the light
that reaches their perimeters by geometrically block-
ing the light and by diffraction effects. To account
for this, the functions F;(r,, r,) and N;(r,, r,), or the
integrals thereof that quantify diffraction effects on
power reaching the detector, can be scaled or evalu-
ated slightly differently.

The diffraction effects of the source defining aper-
ture and nonlimiting apertures combine to affect the
power reaching the detector. We can characterize
this effect at each wavelength by the ratio of the
spectral power reaching the detector, ®,(\), to the
spectral power that would reach the detector in geo-
metrical optics, ®,,(\). Calling this ratio F(\), and
the difference between F(\) and unity €(\), we obtain

DN/ P \(N) = F(N) = 1 + e(N). (20)

In the case of there being no nonlimiting apertures,
we obtain

[(I))\()\)/(I)O,)\()\)“N:O =F,(N)=1+¢0M), (21

a function that is characterized elsewhere. In the
case of an extended-area (EA) source, we obtain

[D\(N)/ Do (M ][ga = Fo(\) = 1 + €c(N), (22)
with

ec(\) = (TR ™! f d’r[E,\(r,)/E\(ry) — 1].

det. aper.

(23)

Because this has identifiable contributions from each
nonlimiting aperture, we can decompose this into
each nonlimiting aperture’s contribution:

N

ec(N) = >, eq(N). (24)

i=1
Note that we usually have ¢;(\) < 0 and e5(\) > 0.

In the case of a source with light originating behind
the source defining aperture, we obtain

DN/ Po\(N) = F(N) = 1 + €,(N) + ag(N), (25)
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Table 1. Specifications of the Optical Setup Used by Boivin
Aperture Radius (mm) z Coordinate (mm)
Extended-area source R, =05 z,=0
1 ry=35 z; =500
2 ry = 3.5 zo = 650
3 rs =3.5 z5 = 800
4 ry =35 z, = 950
Detector R;=1.25 zy = 1350
with
N
agN) = 2 agi(\). (26)
i=1
Here, a function o ,(\) replaces g ;(\). One either

evaluates ag(N) as described below or one evaluates
the function eG,,()\) as described above and scales it
according to a rule, ag ;(\) = w;eg,(\). In the latter
case, w,; remains to be determined as described below.
The algorithm for deciding which of the last two op-
tions to take can be stated as follows. As the first
step, if we consider a point r; on the perimeter of
nonlimiting aperture i, the source defining aperture
provides r; a field of view into the region of space
behind the z = z_ plane. If and only if the radiating
entities of the source fill this field of view, the perim-
eter of nonlimiting aperture i is fully illuminated.

If the perimeter of nonlimiting aperture i is not fully
illuminated, the source defining aperture blocks some
light from reaching the perimeter for purely geometric
reasons. In this case, the source defining aperture is
probably large enough that its diffraction effects on
light reaching perimeter i can be neglected. One can
approximately account for the geometric effects of the
source defining aperture on the diffraction effects of
nonlimiting aperture i by treating the recessed disk of
radius Rpp as an extended-area source when comput-
ing ag,;(\). Note that this does not invalidate our
previous use of the boundary diffraction wave formu-
lation, even though there is not always a line of sight
between r, and r;. Validity of the boundary diffrac-
tion wave formulation depends on whether the prover-
bial point 1 on the perimeter of nonlimiting aperture :
approaches the said line of sight, and it does not do so
when the nonlimiting aperture is illuminated through
the source defining aperture.

If the perimeter of nonlimiting aperture i is fully
illuminated, a scaling factor w; can approximately
account for diffraction effects of the source defining
aperture on the diffraction effects of nonlimiting ap-
erture i: We would obtain ag,(\) = w;eq,(\). We
can let G;(r;) denote the factor that multlphes the
total power that passes through nonlimiting aperture
i because of diffraction. If a nonlimiting aperture
perimeter is fully illuminated, it is easy to estimate
G,(r;) by use of published formulas.# The scaling
factor w; is related to the irradiance at the aperture
perimeter, and we obtain the following relation, from
which we can deduce w;:

d[’lTrizGi(ri)]/dri = 2’ﬂ'riwi. (27)
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Fig. 2. Diffraction-induced relative excess irradiance for various
combinations of apertures (Aps.) present in a setup studied by
Boivin. Crosses indicate numerical results, and the solid curves
indicate results given by the present model.

In two extreme cases with all N nonlimiting aper-
ture perimeters fully illuminated, it can be especially
easy to estimate the w; scaling factors. In one limit,
if the source defining aperture is large and its diffrac-
tion losses are small, we obtain w; ~ 1 and e(\) ~
€.(\) + €g(\). In the opposite limit, if the source
defining aperture is small and is illuminated from
within a large solid angle, we obtain w, =~ F(\) and
F(\) =~ FL(N Fg\).

4. Test of the Formula

As an example for testing the framework presented
here, one can consider an optical setup used by Boivin
to study diffraction effects.’* The full setup is spec-



Table 2. Diffraction Effects for the Setup Used by Boivin

Aperture Model e;(\) Numerical e;(\) Measured egs(\)
1 0.0110 0.0109 0.0105(5)
2 0.0095 0.0095
3 0.0077 0.0076
4 0.0057 0.0058
1+2 0.0205 0.0206 0.0206(5)
1+2+3 0.0282 0.0283 0.0295(5)
1+2+3+4 0.0338 0.0340 0.0352(5)

ified in Table 1, although the four 7-mm-diameter
nonlimiting apertures were not always present. In
Ref. 6 and this paper the diffraction for A = 0.58 pm
is studied, which was the effective wavelength for the
actual source—detector combination. In Ref. 6 theo-
retical diffraction losses due to the source defining
aperture and gains due to the nonlimiting apertures
were reported. In agreement with ideas raised here,
it was found that diffraction effects of the nonlimiting
apertures would arise from their being geometrically
illuminated through the source defining aperture.

Carrying out the integration implied by Eq. (19),
the diffraction effects on irradiance of the nonlimiting
apertures can be modeled by approximation (18) on
an aperture-by-aperture basis. Figure 2 shows the
results found from Eq. (19), with the integrand com-
puted according to approximation (18). In this
setup, there are no geometric blocking effects, so that
one always has nonzero F(r,, r;) and N;(r;, r;). Fig-
ure 2 also shows the numerically calculated diffrac-
tion effects on irradiance based on a full numerical
diffraction calculation in the spirit of approximation
(2) by use of the Fresnel approximation and the meth-
ods of Ref. 6. It is gratifying that the results of
approximation (18) and Eq. (19) agree so well with
the full numerical results. Oscillations found in the
present numerical results that are for monochro-
matic light vanish nearly altogether for a sufficiently
broadband source, such as a Planck source. Numer-
ical results for Fi;(\) and the corresponding model
results are shown in Table 2 along with available
experimental results of Boivin (with 2 = 1 standard
uncertainties being quoted). The agreement be-
tween the two types of theoretical result should be
noted.

As a second example, Table 3 specifies a setup sim-
ilar to one used to calibrate a blackbody source.
Here we consider a fictitious blackbody with R, = 0.1,

Table 3. Specifications of a Plausible Blackbody (BB) Calibration

Setup
Aperture Radius (mm) z Coordinate (mm)

BB cavity opening Rgpp =3 —dpg = —15
Source R, =0.1,04,2.25 (z, = 0)

1 r, = 8.22 z, = 100.79
2 re = 9.49 2z, = 146.33
3 rs = 8.23 z5 = 163.50
Detector R, =10.33 2z, = 265.68
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Fig. 3. Diffraction-induced relative excess irradiance for two com-
binations of apertures (Aps.) in a plausible setup for a blackbody
calibration and the difference between the results (top panel).
The solid curve indicates model results, and the dashed curve
indicates numerical (numer.) results.

0.4, and 2.25 mm, and we consider effects of all three
nonlimiting apertures, which are fully illuminated
for the two smaller values of R, but partially illumi-
nated for the largest value.

Figure 3 shows diffraction effects on spectral irra-
diance for 5-pm wavelength light and R, = 0.4 mm
for cases of only aperture 3 versus apertures 1 and 3.
The difference is also shown and compared with
model results expected from w,F,(r,, r; and
wyN;(r,, r;). The agreement appears reasonable on
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Fig. 4. Diffraction losses and (for two smaller R, values) w; pa-
rameters versus wavelength \ (dashed curves) for plausible setup
for a blackbody calibration. The solid curves indicate model re-
sults and crosses indicate numerical (numer.) results.

the basis of visual inspection, with oscillations in nu-
merical results tending to be smaller for broadband
light or shorter wavelengths. The oscillations also
tend to be smaller for larger R, and vice versa, which
is a trend in many optical setups. This means that
the model results presented in this paper tend to be
better in cases in which numerical results are more
demanding. Closer examination shows that the
added irradiance due to aperture 1 bears the signa-
ture of Fresnel edge diffraction at the edge of aper-
ture 3, which corroborates the notion of geometric
blocking in the limit of short wavelengths.

For R, = 0.1 mm and R, = 0.4 mm, and all three
nonlimiting apertures present, Eq. (27) and the re-
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Fig. 5. Relative excess spectral power due to diffraction for a
plausible setup for a blackbody calibration versus wavelength \.
The solid curves represent model results and crosses indicate nu-
merical (numer.) results. Where appropriate, the model results
were enhanced (enh.) as discussed in the text to give the dashed
curves.

sults of Ref. 4 lead to values of F;(\) and w; that are
plotted in Fig. 4. Likewise, Fig. 5 shows numerical
results (crosses) and results of the present model
(solid curves) for e;(\). Clearly, there are oscilla-
tions that are missing in the model. When consid-
ering total power, the effects of these oscillations are
largely self-canceling for a sufficiently broadband
source, such as a thermal source. These oscillations
arise, in particular, when an aperture is fully illumi-
nated and, in an analogous fashion, fully viewed by
the detector. In such cases, one can easily replace
the model’s €5 ;(\) with a more precise € ;(\) using



formulas such as those found in Ref. 4, which leads to
the dashed curves shown in Fig. 5. Conversely, the
present model can play the role of such formulas
when an aperture is not fully illuminated and viewed.
For R, = 2.25 mm, the nonlimiting apertures are not
all fully illuminated. Hence, we computed each
ag (M) by treating the 3-mm-radius cavity opening as
an extended-area source; values of the w; parameters
are not shown in the top panel of Fig. 4; and there is
no dashed curve in the top panel of Fig. 5.

5. Closing Remarks

The potential value of this study is threefold. It can
complement full numerical calculations, especially at
small wavelengths. It can also help one check the
validity of the numerical calculations. Finally, it
may provide a good combination of computational
accuracy and efficiency. Because this study is pre-
sented as a means of preventing larger, more accu-
rate numerical calculations, the uncertainty of the
results obtained can be characterized as follows.
Differences between the results given by the formula
that is developed and more complete numerical treat-
ments provide an approximate example of the formu-
la’s accuracy. However, the overall uncertainty of
the results obtained also has a component related to
use of Kirchhoff diffraction theory, which is approxi-

mate, an issue beyond the scope of this paper that
remains to be better studied.
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